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Schema Matching

Discovering potential correspondences between
attributes of different relations with various schemata.

Pitfalls of existing methods
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External Knowledge
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Syntax-based
Relational Embeddings MAtcher (REMA)

An automated domain-agnostic schema matching approach, relying only on the
information conveyed from the input datasets, without the need of external knowledge.
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Human Help

REMA's Pipeline

Relational data from several tables are
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2. Generate Random Graph Walks
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3. Train Graph Embeddings
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4. Generate Column-similarities from Embeddings
MoviesDB.Cast «—> CinemaDB.Actor
MoviesDB.Name <—> CinemaDB.Title
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Further configuration and
enhancements for REMA
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Tackle storage and scalability
issues for large datasets
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Dataset fabrication to enable a
better evaluation of Schema
Matching methods

REMA towards capturing
human-understandable

relationships



